練習問題5の解答例

version: June 29, 2020, 暫定版

お願い:解答に誤りを見つけたり、説明がわかりづらい点があれば、落合まで連絡してください。 改訂します。

- [71] 意味がわかると明らかっぽいので答案が書きづらい。また、問題文 (a) と (b) で σ が異なる意味で使われているので、記号を分けたほうが答案が書きやすい。
- (a)⇒(b) σ が $\{1,2,\ldots,n-1\}$ を $\{1,2,\ldots,n-1\}$ に移すこと。 σ は単射なので、i < n ならば、 $\sigma(i)$ と $\sigma(n) = n$ は異なる。したがって $\sigma(i) < n$ である。
 - $\sigma: \{1, 2, \ldots, n-1, n\} \to \{1, 2, \ldots, n-1, n\}$ が単射なので、 $\sigma: \{1, 2, \ldots, n-1\} \to \{1, 2, \ldots, n-1\}$ も単射。
 - $\sigma: \{1, 2, ..., n-1, n\} \to \{1, 2, ..., n-1, n\}$ は全射なので、任意の i < n に対して、 $\sigma(j) = i$ となる $j \le n$ が存在する。 $\sigma(j) = i < n = \sigma(n)$ なので、 σ が単射だから j < n である。したがって、 $\sigma: \{1, 2, ..., n-1\} \to \{1, 2, ..., n-1\}$ は全射。
- (b)⇒(a) $\sigma: \{1,2,\ldots,n-1,n\} \to \{1,2,\ldots,n-1,n\}$ は全射なので、 $\sigma(i)=n$ となるような $i \leq n$ が存在する。仮定 (b) より、i < n に対しては、 $\sigma(i) < n$ である。したがって、 $\sigma(n)=n$ である。

コメント:要素の個数が等しい (n-1 個) 集合上の単射は全射である、とか、全射は単射である、という事実を使うと、全射または単射のどちらかだけを証明する、という省力化は可能である。

コメント:実は、 $\sigma:\{1,2,\ldots,n-1,n\}\to\{1,2,\ldots,n-1,n\}$ と $\sigma:\{1,2,\ldots,n-1\}\to\{1,2,\ldots,n-1\}$ をどちらも同じ σ で書くのはやや混乱の原因となる。 σ の定義域を制限したものを τ と書いて、 $\sigma:\{1,2,\ldots,n-1,n\}\to\{1,2,\ldots,n-1,n\}$ 、 $\tau:\{1,2,\ldots,n-1\}\to\{1,2,\ldots,n-1\}$ と書き分けた方が、よりしっかりとした記述になる。

- $\lceil 72 \rceil$ 1 と n の役割を入れ替えれば、 $\lceil 71 \rceil$ になる。
- [73] $f \circ f: S_n \to S_n$ が恒等写像であることを示せば良い。 $(f \circ f)(\sigma) = f(f(\sigma)) = f(\sigma^{-1}) = (\sigma^{-1})^{-1} = \sigma.$ 証明終わり。
- [74] $f \circ f : S_n \to S_n$ が恒等写像であることを示せば良い。 $(f \circ f)(\sigma) = f(f(\sigma)) = f(\sigma\rho) = (\sigma\rho)\rho = \sigma(\rho\rho) = \sigma\varepsilon = \sigma.$ 証明終わり。

- 75 **2**(1) 15, (2) 8, **3**(1) 7, (2) 6, (3) 6, (4) 9, (5) 17. 計算過程はビデオを参照。 コメント: 間違ってたら教えてね。
- $\lfloor 76 \rfloor$ 答え: $l(\sigma) = 2(j-i) 1$.

証明:絵を描くことで

$$I(\sigma) = \{(i,j)\} \cup \{(i,k) \mid i < k < j\} \cup \{(k,j) \mid i < k < j\}$$

がわかる。計算過程はビデオを参照。

[77] $A \cap B = \emptyset$ の時、 $A \cup B = A \cup B$ と書くことにする。 $M = \{i \in \mathbb{N} \mid 1 \le i \le n\}$ と書く。この時、どこで、入れ替えが起こるか(紐が交差するか)に着目して場合分けをすると、

$$\begin{split} I(\sigma\tau) &= \{(i,j) \mid i,j \in M, i < j, \sigma(\tau(i)) > \sigma(\tau(j)) \} \\ &= \{(i,j) \mid i,j \in M, i < j, \sigma(\tau(i)) > \sigma(\tau(j)), \tau(i) > \tau(j) \} \\ &\sqcup \{(i,j) \mid i,j \in M, i < j, \sigma(\tau(i)) > \sigma(\tau(j)), \tau(i) < \tau(j) \}, \\ I(\tau) &= \{(i,j) \mid i,j \in \mathbb{N}, 1 \leq i < j \leq n, \tau(i) > \tau(j)) \} \\ &= \{(i,j) \mid i,j \in M, i < j, \tau(i) > \tau(j) \} \\ &= \{(i,j) \mid i,j \in M, i < j, \tau(i) > \tau(j), \sigma(\tau(i)) > \sigma(\tau(j)) \} \\ &\sqcup \{(i,j) \mid i,j \in M, i < j, \tau(i) > \tau(j), \sigma(\tau(i)) < \sigma(\tau(j)) \}, \\ I(\sigma) &= \{(p,q) \mid p,q \in M, p < q, \sigma(p) > \sigma(q)) \} \\ &= \{(s,t) \mid s,t \in M, \tau(s) < \tau(t), \sigma(\tau(s)) > \sigma(\tau(t)), s < t \} \\ &\sqcup \{(s,t) \mid s,t \in M, \tau(s) < \tau(t), \sigma(\tau(s)) > \sigma(\tau(t)), s > t \} \\ &= \{(i,j) \mid i,j \in M, \tau(i) < \tau(j), \sigma(\tau(i)) > \sigma(\tau(j)), i < j \} \\ &\sqcup \{(j,i) \mid j,i \in M, \tau(j) < \tau(i), \sigma(\tau(j)) > \sigma(\tau(i)), j > i \} \end{split}$$

となる。すなわち、

$$I(\sigma\tau) = I_1 \sqcup I_2, \qquad I(\tau) = I_1 \sqcup I_3, \qquad I(\sigma) = I_2 \sqcup I_3$$

となっている。集合 A の元の個数を $\sharp A$ と書くことにする。すると、

$$l(\sigma) + l(\tau) - l(\sigma\tau) = (\sharp I_1 + \sharp I_3) + (\sharp I_2 + \sharp I_3) - (\sharp I_1 + \sharp I_2) = 2\sharp I_3$$

となる。

- [78] (1) $\sigma = (i\ i+1)$ の時、 $I(\sigma) = \{(i,i+1)\}$ である。これは [76] の特別な場合に当たる。絵を描けば、 $i\ black b$
 - (2) 方針:交点の個数が一つとなるような交わりは隣り合った線が1箇所だけ交わる時に限る。

- $\lceil 79 \rceil$ (a) $\lceil I(\sigma\tau)$ は $I(\sigma)$ から (i,i+1) を取り除いた集合である」ことを示す。ビデオを参照。
 - (b) $\lceil I(\sigma)$ は $I(\sigma\tau)$ から (i,i+1) を取り除いた集合である」ことを示す。あるいは、 $\sigma\tau$ に 対して $\lceil 79 \rceil$ (a) を適用することができる、という議論も可能。ビデオを参照。
- [80] 方針: $l(\sigma)$ に関する数学的帰納法。 $l(\sigma)=0$ の時は $\sigma=\varepsilon$ である。この時は、[0] 個の積」に意味をつけることが悩ましいので除外しよう。 $l(\sigma)=1$ の時は、[78] (2) が使える。 $l(\sigma)=m$ まで成り立っているときに $l(\sigma)=m+1$ の時を示す。[79] を用いる。