, G=(g_1,\ldots,g_r) \in M(1,r,R).
There exists C \in M(m,r,R) and D \in M(r,m,R) such that G=FC and F=GD. Put A=I_m - CG \in M(m,m,R). Then FA=O_{1,m} shows \langle A \range \subset S_F.
Suppose B \in M(r,s,R) be a generating system of S_G. Put B^* = CB \in M(m,s, R). Then F B^*=O_{1,s} shows \langle B^* \range \subset S_F.
Now take \mathbf{h} \in S_F \subset M(m,1,R). Put \mathbf{h}_* = D \mathbf{h} \in M(r, 1, R) and \mathbf{k} = C \mathbf{h}_* \in M(m,1,R). Then \mathbf{h} - \mathbf{k} = A \mathbf{h} \in \langle A \rangle. On the other hand, G \mathbf{h}_* =GD \mathbf{h} = F \mathbf{h}=0 shows that \mathbf{h}_* \in S_G. Then there exists \mathbf{\alpha} \in M(s,1,R) such that \mathbf{h}_* = B \mathbf{\alpha}. This shows \mathbf{k} = CB \mathbf{\alpha} = B^* \mathbf{\alpha} \in \langle B^* \rangle.
Summing up these two consequences, we obtain \mathbf{h} = \mathbf{h}-\mathbf{k} + \mathbf{k} \in \langle A \rangle + \langle B^* \rangle = \langle A \cup B^* \rangle.