Toshihiko Matsuki; Orthogonal multiple flag varieties of finite type
Part I
- p1. 1. Introduction.
- p4. 2. Exclusion of multiple flag varieties of infinite type
- p4. 2.1. A technical lemma.
- p5. 2.2. The case of $n=1$.
- p5. 2.3. Proof of Proposition 1.2.
- p6. 2.4. A lemma for O$_5(\mathbb{F})$.
- p7. 2.5. Proof of Proposition 1.3.
- p7. 2.6. First lemma for O$_6(\mathbb{F})$.
- p9. 2.7. Second lemma for O$_6(\mathbb{F})$.
- p9. 2.8. Some conditions on a,b and c.
- p10. 2.9. A lemma for O$_7(\mathbb{F})$.
- p11. 2.10. Exclusion by Lemma 2.16.
- p11. 2.11. Conclusion.
- p11. 2.12. Proof of Proposition 1.4.
- p12. 3. Orbits on $\mathcal{T}_{(\alpha),(\beta),(\gamma)}$.
- p12. 3.1. Preliminaries.
- p15. 3.3. Structure of $R=...$.
- p16. 3.4. Invariants of the $R$-orbit of $V \in M = M_{(n)}$.
- p17. 3.5. Representative of the $R$-orbit of $V$.
- p60. References.
Part II
- p01. 1. Introduction
- p04. 2. Preliminaries
- p06. 3. Exclusion of multiple flag varieties of infinite type
- p06. 3.1. Proof of Proposition 1.2.
- p08. 3.2. Proof of Proposition 1.3.
- p10. 3.3. Proof of Proposition 1.4.
- p11. 3.4. Proof of Proposition 1.5.
- p14. 3.5. Case of a=(n), b=$(\beta)$ with $4\le \beta \le n-2$.
- p19. 3.6. Proof of Proposition 1.6(ii).
- p20. 3.7. Proof of Proposition 1.6(iii).
- p21. 4. Triple flag varieties of finite type.
- p22. 5. Review of technical results in [M15].
- 5.1
- 5.2
- 5.3
- 5.4
- p28. 6 Proof of Proposition 4.1.
- p28. 6.1. Reduction of flags in $U_+$.
- p31. 6.2. Proof of (i) and (ii).
- p32. 6.3. Proof of (iii) and (iv).
- p36. 6.4. Proof of (v).
- p37. 7. Proof of Proposition 4.2 and 4.3.
- p37. 7.1. Proof of Proposition 4.2.
(A), (B), (C), (D), (D.1), (D.1.1), (D.1.2), (D.1.3), (D.1.4), (D.1.5), (D.1.6), (D.2), (D.3), (D.3.1), (D.3.2), (D.3.3), (D.3.4), (D.3.5), (D.3.6), (D.4), (D.5), (D.5.1), (D.5.2), (D.5.3), (D.6), (D.6.1), (D.6.2), (D.6.2.1), (D.6.2.2), (D.6.2.3), (D.6.2.4), (D.6.2.5), (D.6.3).
- p45. 7.2. Proof of Proposition 4.3.
- p47. 8. Proof of Proposition 4.4.
- p47. 8.1. Proof of the case $b=(\beta)=(n-1)$.
(A), (B),(C).
- p49. 8.2. Proof of the case of $b=(1,n-1)$.
(A),(B),(C),(D),(E),(F).
- p54. 9. Proof of Proposition 4.5.
(A),(B),(C),(D),(E),(F), (G).
- p61. 10. Proof of Proposition 4.6.
(A)-(I).
- p69. 11. Proof of Proposition 4.7.
(A)-(E).
- p76. 12. Appendix
- p76. 12.1. Two lemmas.
- p77. 12.2. Extensions of Proposition 6.3 in [M15].
- p82. 12.3. Orbit decompositions of the full flag variety.
(A)-(K).
- p91. 12.4. A lemma.
- p92. 12.5. Lemmas related with $SL_2(F)$.
- p96. References