Audrey Terras, Fourier Analysis on Finite Groups and Applications, London Mathematical Society, Student Text 43, 1999. - Remarks: contributed by Dr. Kosaka - p37, line -8, $f(y)$ in the left-hand side should be $f(x)$. - p46, line -8, $(\mbox{mod }n$ should be $(\mbox{mod }n)$. - p51, equation(4), the left-hand side. $Af(X)$ should be $Af(x)$. - p52, equation(6), the right-hand side of the first equation. $\langle v_i, v_j \rangle v_j$ should be$\langle v, v_j \rangle v_j$. - p58, line 11, Equation (3) will be Equation (4). - p59, line -1, $0\le a, b \le n$ will be $0 \le a,b \le n-1$, as is in the definition of $F_n$ in line 7. - p60, line 1, $W_n$ will be $W_a$. - p60, line -3, $c(k)$ will be $c_k$. - p65, line -11, N$_{F_n/F\alpha}$ will be N_{F_n/F}(\alpha). Note that $\alpha$ is not a suffix. - p66, line 1, $\Xi_4$ will be $\Xi_2$. - p66, line -2, $\Xi_9$ will be $\Xi_2$. - p68, line 10, $j$ in $\sum_{j=1}^n$ will be $k$. - p69, line 4, equation(19), $X$ in the left-hand side will be a lower case letter $x$. - p74, line -4, ax in the trace will be $ax$. - p80, line -1, the inequality $\ge 2k \left| W \right| - 2k \left| \partial \right| will be outside of the summation, and will be put in the next line, and therefore, remove the comma at the end of the line. - p84, Definition, line 1, $2n \times 2n$ will be $(n+1)\times (n+1)$.