微分積分学 小テスト No.5 (5/21)

学生番号

氏名

1 $x \ge 0$ について次を示せ.

$$x - \frac{1}{3 \cdot 2 \cdot 1} \cdot x^3 \leq \sin x \leq x - \frac{1}{3 \cdot 2 \cdot 1} \cdot x^3 + \frac{1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot x^5$$

また、このことを使って $\sin(0.1)$ を小数点以下6桁まで求めよ。

[**解答**] $f(x) = x - x^3/6 + x^5/120 - \sin x$ とおくと簡単な計算で

$$f'(x) = 1 - x^2/2 + x^4/24 - \cos x$$
, $f''(x) = -x + x^3/6 + \sin x$, $f'''(x) = -1 + x^2/2 + \cos x$

$$f^{(4)}(x) = x - \sin x$$
, $f^{(5)}(x) = 1 - \cos x$.

特にx = 0での値は

$$f(0) = f'(0) = f''(0) = f'''(0) = f^{(4)}(0) = 0$$

である.

最初に $x \ge 0$ で $f^{(5)}(x) \ge 0$ であることと定理 5 から $f^{(4)}(x)$ が $x \ge 0$ の範囲で増加関数であることがわかる. $f^{(4)}(0) = 0$ であるので, $x \ge 0$ で $f^{(4)}(x) \ge 0$ であることがわかる.

同様にして順に「 $x \ge 0$ で $f'''(x) \ge 0$ 」, 「 $x \ge 0$ で $f''(x) \ge 0$ 」, 「 $x \ge 0$ で $f'(x) \ge 0$ 」, 「 $x \ge 0$ で $f(x) \ge 0$ 」 であることを順に示すことができる。最後は問題の右側の不等式を示している。(左側の不等式の証明も同様。)

最後の評価は

$$(0.1) - (0.1)^3/6 = 0.099833333...$$

で

$$(0.1)^5/120 < (0.1)^7$$

であることから、0.09983333... < $\sin x$ < 0.0998335. 答えは 0.099833.