数学演習 IIA-5 回目問題 [3] の略解:広義積分の収束発散

1

問題 a,b を実数とする。広義積分 $I:=\int_1^\infty \frac{(\log x)^b}{x^a} dx$ の収束発散を判定せよ。

答え (1) I が収束するための必要十分条件は、a>1 かつ b>-1 である。

定義 積分 I は x = 1+0 と $x = +\infty$ の 2 箇所で広義積分になる。 そこで、区間を 2 つに分けて、

$$I_1 := \int_1^e \frac{(\log x)^b}{x^a} dx, \quad I_2 := \int_e^\infty \frac{(\log x)^b}{x^a} dx$$

と置く。この時、より詳細に次が成り立つ。

答え (2) I_1 が収束するための必要十分条件は b > -1 である。

(3) I_2 が収束するための必要十分条件は a > 1 または a = 1 かつ b < -1 である。

後の節で述べるように、答え (1) を得るためには必ずしも (2)(3) を得る必要はない(迂回路がある)のだが、しかし、演習(練習)としては (2)(3) ができた方が良いので、(2)(3) の証明をまず与えることにしよう。

$2 \quad x = 1 + 0$ での広義積分の収束条件

(2) の証明: $I_1 = \int_1^e x^{-a} (\log x)^b dx$ について。 $x \in [1,e]$ の範囲で、 x^{-a} は単調なので、 $\min(1,e^{-a}) \le x^{-a} \le \max(1,e^a)$ となる、つまり、上からも下からも有界である。これより、

$$\min(1, e^{-a}) \int_1^e (\log x)^b dx \le I_1 \le \max(1, e^{-a}) \int_1^e (\log x)^b dx$$

となるので、 I_1 の収束発散は $I_3:=\int_1^e (\log x)^b dx$ の収束発散と同値* 1 である。以下、 I_3 の収束発散を考える。

 $b\geq 0$ ならば有界閉区間上の連続関数の積分なので I_3 は収束する。b<0 であれば、 $x\in [1,e]$ の範囲で、 $\frac{x-1}{e-1}\leq \log x\leq x-1$ ゆえ

$$\int_{1}^{e} (x-1)^{b} dx \le I_{3} \le \int_{1}^{e} \left(\frac{x-1}{e-1}\right)^{b} dx$$

が成り立つ。したがって、 I_3 の収束発散は $I_4:=\int_1^e (x-1)^b dx$ の収束発散と一致する。 I_4 が収束する必要十分条件は b>-1 である。

 $^{^{*1}}$ この段階で答えが a に依存しないことがわかる。

3 $x = +\infty$ での広義積分の収束条件

(3) の証明:

 $x=e^t$ と変数変換する。 $dx=e^t dt$ などを用いると $I_2=\int_1^\infty t^b e^{(1-a)t} dt$ となる。

- (3-1) a=1 の場合の証明: a=1 の場合がやさしいので、まずその場合を処理する。この時、 $I_2=\int_1^\infty t^b dt$ なので、収束するための必要十分条件は b<-1 である。
- (3-2) a>1 の場合に I_2 が収束すること: $f(t):=t^be^{(1-a)t/2}$ と置く。「f(t) が $t\in[1,\infty]$ で上に有界である」ことを示せば、

$$I_2 = \int_1^\infty f(t)e^{(1-a)t/2}dt \le M \int_1^\infty e^{(1-a)t/2} = \left[\frac{2M}{1-a}e^{(1-a)t/2}\right]_1^\infty = \frac{2M}{a-1}e^{(1-a)/2}$$

によって I_2 も収束する。

(3-3) a<1 の場合に I_2 が発散すること: $g(t):=t^{-b}e^{-(1-a)t}$ と置く。「g(t) が $t\in[1,\infty]$ で上に有界である」ことを示せば、つまり、 $g(t)\leq M$ であれば、 $t^be^{(1-a)t}\geq 1/M$ なので

$$I_2 \ge \frac{1}{M} \int_1^\infty dt = \infty$$

となるので I_2 も発散する。

(3-4) 以上の考察によって、次の事実を証明すれば良い。

「s>0 と実数 b を固定した時に、 $f(t)=t^be^{-st}$ は $t\in[1,\infty)$ で上に有界。」

その事実の証明は、微分して増減表を書けば良い。

あるいは、補題:

 $[1,\infty)$ 上の連続関数 f(t) が $\lim_{t\to +\infty} f(t)=0$ を満たせば、f(t) は $[1,\infty)$ で有界である。を用いても良い。

4

短めの解答を書くのであれば、 I_1,I_2 に分けず、次のようにすることもできる。元の I で $x=e^t$ の変数変換を行うと、

$$I = \int_0^\infty t^b e^{(1-a)t} dt$$

となる。右辺を I_6 と書く。a>1 ならば u=(a-1)t と変数変換すると、

$$I_6 = (a-1)^{-b-1} \int_0^\infty u^b e^{-u} du = (a-1)^{-b-1} \Gamma(b+1)$$

となる。ガンマ関数の収束発散は8回目の演習で扱った。(結局はここをちゃんと議論する必要がある。ごめんなさい、時間がなくて書けていません。この部分は12/1の演習できちんと解説したのでそれを思い出してください。)

a=1 の時は

$$I_6 = \int_0^\infty t^b dt$$

であり、これもどんな b に対しても発散する。($\int_1^\infty t^b dt$ の収束条件 b < -1 と $\int_0^1 t^b dt$ の収束条件 b > -1 の両方を満たすような b が存在しないので。)

a < 1 ならば u = (1 - a)t と変数変換すると、

$$I_6 = (1-a)^{-b-1} \int_0^\infty u^b e^u du$$

となる。 $u \in [0,\infty)$ で $e^u \ge 1$ であるのでこの積分は

$$\int_0^\infty u^b e^u du \ge \int_0^\infty u^b du$$

となり、右辺は a=1 の時の I_6 なので発散する。

5

もっとラフに書くとしたら、

$$\lim_{x \to 1+0} \frac{(\log x)^b}{x^a (x-1)^b} = 1$$

なので、 I_1 の収束発散は I_4 の収束発散と同値である。したがって、収束条件は b>-1。したがって、以下、b>-1 の時だけを考えれば良い。

a=1 の時は、被積分関数 $(\log x)^b x^{-1}$ には不定積分 $\frac{1}{b+1}(\log x)^{b+1}$ が存在する。この関数の $x\to\infty$ での値が無限大に発散するので、積分 I_2 は発散している。

a<1 の時は $x\geq 1$ で $x^a\leq x$ であるから、a<1 の時の I_2 は a=1 の時の I_2 よりも大きい。 したがって発散している。

あとは、a>1 の時に、 I_2 が収束することの証明が残っている。ここは 4 節の技法でガンマ関数 に帰着するかな。