数学演習 IA-10 回目:線形独立、内積外積

|1| \mathbb{R}^3 のベクトル $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ に対して、次の公式を示せ。

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{c} \cdot \mathbf{d})$$

- |2| ベクトル空間 \mathbb{R}^n のいくつかの元 $\mathbf{a}_1,\ldots,\mathbf{a}_k$ を考える。次の補題のうち、(1)(4)(5) を示せ。
 - (1) k 本のベクトル $\mathbf{a}_1, \ldots, \mathbf{a}_k$ が線形独立であれば、そのうちの 1 本を減らした (k-1) 本のベクトル $\mathbf{a}_1, \ldots, \mathbf{a}_{k-1}$ も線形独立である。
 - (2) 線形独立なベクトルの集まりが与えられた時、そのどんな部分集合も線形独立である。
 - (3) 何本かのベクトルの集まりが与えられた時、そのある部分集合が線形従属であれば、もとの集合も 線形従属である。
 - (4) 何本かのベクトルの集まりが与えられた時、そのうちのある2本のベクトルが同じベクトルであれ ば、線形従属である。
 - (5) 何本かのベクトルの集まりが与えられた時、ある1本が零ベクトルであれば、線形従属である。

③ 行列
$$A = \begin{pmatrix} 1 & 0 & 2 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 & 2 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 の行ベクトルを $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ とし、列ベクトルを $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4, \mathbf{b}_5, \mathbf{b}_6, \mathbf{b}_7$ とする。次の問いに答えよ。 $(1)(2)(3)(6)(7)$ は答えだけで良い。 $(4)(5)(8)(9)$ は説明も加えよ。

の行べクトルを $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ とし、列ベクトルを

- (1) 行列 A は簡約か?
- (2) 行列 A の階数 r = rank A を求めよ。
- (3) $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ は線形独立か?
- (4) 行列 A の 3 本の線形独立な行ベクトルの組は (3) に挙げたもの以外にあるか?
- (5) $\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5$ は線形独立か?
- (6) $\mathbf{b}_1, \mathbf{b}_4, \mathbf{b}_7$ は線形独立か?
- (7) $\mathbf{b}_3, \mathbf{b}_4, \mathbf{b}_6$ は線形独立か?
- (8) $\mathbf{b}_3, \mathbf{b}_6, \mathbf{b}_7$ は線形独立か?
- (9) 行列 A の 3 本の線形独立な列ベクトルの組は何組あるか?
- |4|| 実数 k を一つ固定する。ベクトル空間 ℝⁿ の 5 つの元 a₁, a₂, a₃, a₄, a₅ を考える。a₁, a₂, a₃, a₄ が線 形独立であり、 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_5$ が線形従属であれば、 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4 + k\mathbf{a}_5$ は線形独立であることを示せ。

問題は以上。

出典または類題または出題の狙い:

- 1 p114 練習問題 4.3(3)。
- 2 p100 に現れた用語の定義を確認する問題。
- |3|「線形独立な行ベクトルの最大数」を理解する問題
- |4| 定理 3.18(p93) の証明の 6 行目から 11 行目の議論を翻訳したもの。

ヒントは裏面:

- 2 なお、(2) は (1) を繰り返せばよい。(3) は (2) の対偶である。
- [2] 前の番号の小問の性質は用いて良い。例えば (5) を示すときに (3) を使っても良い。もちろん使わなくても良い。
- ② (4) 設定が分かりづらいかもしれないが、例えば、 $\mathbf{a}_1 = \mathbf{e}_3$, $\mathbf{a}_2 = \mathbf{e}_1$, $\mathbf{a}_3 = \mathbf{e}_2$, $\mathbf{a}_4 = \mathbf{e}_1$ のような状況 を想定している。
- |4| やり方はいろいろあるが、例えば、 \mathbf{a}_5 は $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ の線形結合で表せるか?