野村隆昭:微分積分学講義(共立出版)
- 講義準備をした上での注意点。
- 著者自身によるページ
- 著者のページに掲載済みになったものは * をつけます。
- page 2, line 9-10. 「空集合は任意の集合の部分集合となる」ことが「約束」されているが、これは、(line 6-7 の部分集合の定義に基づいて)証明できる命題である。なお、数学の本における「約束」が何を意味するのかはこの本では書かれていない。
- page 8. この本では、単射であれば(全射でなくても)逆写像を考えていることに注意。
- page 13, 例題2.6. 証明の補足。本質的には本の証明と変わらないが、「$\alpha=0$ の場合に帰着する」ということをまず宣言するのが私の趣味。すなわち、$b_n := a_n - \alpha$, $t_n = \displaystyle\frac{b_1+\cdots+b_n}{n}$ と定義する.
ここで説明のために以下の4つの主張を番号をつけて
(1) $\displaystyle \lim_{n\to\infty} a_n=\alpha$, (2) $\displaystyle\lim_{n\to\infty} b_n = 0$,
(3) $\displaystyle\lim_{n\to\infty} t_n =0$, (4) $\displaystyle \lim_{n\to\infty} s_n = \alpha$ と定める。このとき、$t_n = s_n-\alpha$ なので、(3)と(4) は同値、(1)と(2) は定義より同値なので、(2)$\Rightarrow$(3) が示せれば、目的である (1)$\Rightarrow$(4) が示せることになる。ここから教科書の「解」を$\alpha=0$ として読めばよい。
- page 14, 問題2.7. 同じように$\alpha=0$ に帰着する技術を使う。この問題の場合は、簡略化の効果がより大きいと思われる。すなわち、$b_n = a_n- \alpha$, $T_n = \displaystyle \frac{nb_1+(n-1)b_2+\cdots+2b_{n-1}+b_n}{n^2}$ と置くと、$S_n = T_n +\displaystyle\frac{n+(n-1)+\cdots+2+1}{n^2}\alpha$ となるので、$\alpha=0$ の場合に示せばよい。
ここで、$\displaystyle\left\vert S_n \right\vert \le \frac{n\left\vert a_1 \right\vert +(n-1) \left\vert a_2 \right\vert+\cdots+2 \left\vert a_{n-1} \right\vert + \left\vert a_n \right\vert}{n^2}
\le \frac{n\left\vert a_1 \right\vert +n \left\vert a_2 \right\vert+\cdots+n \left\vert a_{n-1} \right\vert +n \left\vert a_n \right\vert}{n^2}=\frac{\left\vert a_1 \right\vert + \left\vert a_2 \right\vert+\cdots+ \left\vert a_{n-1} \right\vert + \left\vert a_n \right\vert}{n}$ となる。
$\displaystyle \lim_{n\to\infty} a_n=0$ ならば、$\displaystyle \lim_{n\to\infty} \left\vert a_n \right\vert =0$ であり、例題2.6 より、$\displaystyle\lim_{n\to\infty}\frac{\left\vert a_1 \right\vert + \left\vert a_2 \right\vert+\cdots+ \left\vert a_{n-1} \right\vert + \left\vert a_n \right\vert}{n}=0$ なので、「はさみうちの原理」(命題2.16(2)) により、$\displaystyle \lim_{n\to\infty} S_n =0$ である。
- page 17, 問題2.19. 問題の置かれている位置から、直前の注意2.18「高校で習得した方法」をふまえた練習問題と思えるが、証明の途中で使われる式 $\displaystyle \lim_{n\to\infty} 3^{1/n} =3^0$ の成立根拠については注意が必要である。すなわち、この式は、命題2.14 や命題 2.16 だけからは従わず、あるいは、命題2.14 や命題2.16と同じレベルの証明をここで与えることは現実的ではなく、問題2.19ではこの式の証明は期待されていないと解釈した方がいいであろう。この式の証明については例えば、後に出てくる問題2.33の必要条件(易しい方)を参照とすることができる。
- * page 21, 問題2.33. やさしい方(必要条件)「$\displaystyle \lim_{n\to\infty} a_n = a$で $f(x)$ が $x=a$ で連続ならば、$\displaystyle \lim_{n\to\infty} f(a_n) = f(a)$」を今後しばしば使うので、その主張ならびに証明だけを抜き出しておきたいようにも思う。(十分条件の方は、証明で $\forall, \exists$ の入った命題の否定命題を正しく書けることが要求されるため、難易度が高い。)
- page 25, 定理3.4 の証明の後半の段落。背理法が使われているが、本の証明を少しだけ書き換えることで、背理法を避けて次のようにも記述できる。まず、「$\forall \alpha \in A, \exists c \in A$ s.t. $\alpha < c$」を示す。証明: $\alpha$ は $S$ の上界ではないので、$\exists s_1 \in S$ s.t. $\alpha < s_1$. このとき、$c := \frac12(\alpha+s_1)$ を考えると、$\alpha < c < s_1$ である。$c<s_1$ より $c$ は $S$ の上界ではないので、$c \in A$ である。証明終わり。この「...」は、「$A$に最大数がない」ことを意味する。(念のために証明:「$A$に最大数がある」とは「$\exists \alpha \in A, \forall c \in A$, $\alpha \ge c$」である。この否定命題がまさに「...」である。証明おわり。)従って Dedekind の公理から、$B$に最小数がある。すなわち、$S$の上界に最小のものがあることが示された。\qed
- page 28, line 3 から。「まるいち」の式より $0 < \alpha - a_{n+1} < \frac12 (\alpha - a_n)$ となる。
従って、$0< \alpha-a_n < \frac1{2^{n-1}} (\alpha - a_1)$ となる。はなさみうちの原理(命題2.16(2)) より、数列 $\{\alpha-a_n\}$ は$0$に収束する。すなわち、$\{ a_n \}$ は $\alpha$ に収束する。証明終わり。 註:この証明だと「定理3.13 を使っていない」。つまり、この命題の証明には必ずしも定理3.13 は必要ではない。またもし、この証明に置き換えるとしたら、p27 の命題3.14 の3行上の「定理3.13 の応用として」という説明文に改変が必要。 註:この証明だと(1)と(2)の証明の類似性が見て取れる。実際、(2) の $a_n$ を $b_n$ と書くと、$b_n = 1/(\alpha-a_n)$, $a_n = \alpha - (1/b_n)$ という変換で、証明まで込めて互いに移り合える。(だから、定理3.13を使っていないことに気がついた。)
- page 35, 定理 4.8 の証明。S の定義で $x,y \in I$ が必要。ところで、2変数の関数とその連続性が必要となるような議論がされているが、それを避けることができる。実際、証明の最初の9行を省略して、いきなり、「$I$ の4つの元 $x_1 > y_1, x_2>y_2$ を固定する。 $0 \leqq t \leqq 1$ に対して、$G(t) = f((1-t)x_1+t x_2) - f((1-t) y_1+t y_2)$ と定義する。」のように、$G$を1変数関数として定義することでも、証明ができる。議論の流れは本と同じ。以下続けると、「連続関数の合成並びに差も連続関数なので$G:[0,1] \rightarrow \mathbb{R}$ は連続関数である。また、$ ((1-t)x_1+t x_2)-((1-t) y_1+t y_2)=(1-t)(x_1-y_1)+t(x_2-y_2)>0$ なので、$G$が一対一ゆえ $G(t)\neq0$ である。したがって、Roll の定理の対偶によって、$G(0)=f(x_1)-f(y_1)$ と $G(1)=f(x_2)-f(y_2)$ は常に同符号である。この符号が正であれば$f$ は狭義単調増加、負であれば狭義単調減少である。」
- page 36, 定理4.9(2) の証明。$\delta$ を抽象的に選んでいるが、$\delta=\min(f(x_0+\varepsilon) -f(x_0), f(x_0)- f(x_0-\varepsilon))$ と具体的に選ぶことができる。また、同じように、$\varepsilon$ も、$0<\varepsilon < \min(b-x_0,x_0-a) $ と選ぶ、と書くこともできる。
- * page 43, 注意4.27, line 2. 「含まれてる」は「 含まれている」が書き物としては普通。ただし、ここで1文字増やすと次の行の終わりで1行増えることになるので、このような表現をしているのかもしれない。
- * page 69, 問題4.93. 「と」する。
- * page 96, line 9. まる2。$n=1$のときは、有理関数ではなく、$\frac12\log(t^2+b^2)$ となる。これが定理5.54の(3)の $A\neq0$ の場合を産み出すので、書いておく必要あり。
- * page 99 項目[1]. 変数変換$\tan \frac x2=t$ の由来が円周の有理パラメータ表示 (5.9), (5.10) にあることを、5.7.1 節と同じように導いておきたい。具体的には円周上の点と $(-1,0)$ とを結ぶ直線の傾きを $t$ としている。
- p101, line -2. 例5.65. なお、2つのパラメータ表示が密接に関係していることを付記しておきたい。すなわち、少し前の line -7 のパラメータ表示 $x=\displaystyle \frac12\left( s - \frac 1s \right)$ で $s= e^t$ と置くと $x=\sinh t$ となる、という説明を加えたい。
- p112, 例5.96. 3行目から5行目の文。何をしてはいけないことなのかが読み取りづらいと思われるため、括弧を補って、『この例で、「被積分関数は奇関数ゆえ、、、、を得る」というような議論をしてはいけない。』としたい。
- p113, 問題5.99(2) の解答 p255. 提示されている変数変換が 5.7.1. の観点からは不自然はないものの巧妙にすぎる感じを受ける。まずは、$x^2=t$ とおくことで、$I= \displaystyle\int_1^\infty \frac{dt}{2t\sqrt{t-1}}$ と書き直し、そのあとで、$\sqrt{t-1}= u$ とおくことに気がついて、$I=\displaystyle\int_0^\infty \frac{du}{1+u^2}$ とする流れもある。
- p113, 例題5.100. 変数変換として、直前のリード文にあるようなものを使うのが自然であろう。例えば、代案として、次のような誘導が考えられる。(1) $t=\tan(\theta/2)$ と置換することで、$I(\sqrt{ab}, \frac{a+b}2) = \int_0^\infty \frac{dt}{\sqrt{(at^2+b)(bt^2+a)}}$ となることを示せ。
(2) $s=\tan\theta$ と置換することで、$I(a,b) = \int_0^\infty \frac{ds}{\sqrt{(b^2s^2+a^2)(s^2+1)}}$ となることを示せ。(3) $t=\sqrt{b/a} s$ と置換することにより、$I(\sqrt{ab}, \frac{a+b}2)=I(a,b)$ であることを示せ。
- p113, 解説。「対称性を考慮して」とあるが、ここに書かれている変換はなぜ、対称性と関係があるのか、わからず。
- page 120, line -3 で $x=\sqrt{t} y+t$ と変数変換しているが、page 121, line 6 では $x=\frac{y}{\sqrt{t}}$ という異なるが似ている変換を同じ文字たちに対して導入していて紛らわしい。
- p154, 例題6.79. 答えの解釈。$1/n^3$の係数が複雑な形をしているが、正体は、$x_n = \displaystyle \left(n+\frac12\right) \pi - \frac1\pi \left(n+\frac12\right)^{-1} - \frac2{3\pi^3} \left(n+\frac12\right)^{-3} + o((n+\frac12)^{-3})$ となっているものを $n$ 冪で再展開したため、異なった項からの寄与が足されていることによる。
- p160, 注意6.91. 「漸近線」の定義がない?索引にもない。
- p186, 例題7.24(1) の解。2行目で $J(x) = \displaystyle 4x^2 \int_0^{\frac12} \sqrt{1-t^2}dt$ と特定した後で一度、$I= \displaystyle \int_0^1 4x^2 dx \int_0^{\frac12} \sqrt{1-t^2}dt$ と書いておきたい。これはp186注意7.23(2) の形をしているので、$x$ の積分と$t$ の積分は相互に関係なく、それぞれ1変数の積分の問題である。教科書には $J(x)$ の計算が書いてあるが、そこから $4x^2$ を取り除いたものが、$t$ に関する1変数の定積分の計算である。
- p236, 問題6.129(b).
- p238, 問題7.25(2) の解答。本の解答では $x=2\sqrt{y} \sin \theta$ と置いているが、$x=2\sqrt{y} t$, $t=\sin\theta$ という2段階に置換して計算して行くことにする。$J(y) = 4y \int_0^{\sqrt{2-y}/2} \sqrt{1-t^2} dt$となる。したがって、$I= \int \int_{D'} 8 y \sqrt{1-t^2} dt dy$となる。
ここで、積分領域$D'$は、$D'=\{(t,y) \mid y\ge 0, 0 \le t \le \sqrt{2-y}/2\}$
$=\{(t,y) \mid t\ge 0, 0 \le y \le 2-4t^2\}$のように書ける。教科書はここで $t$についての積分を先に実行することとし、$t=\sin\theta$ と置換しているのだが、ここでは、$y$ についての積分を先に実行することにしよう。
$y$ についての不定積分は簡単に求まるので、
$I = \int_0^{1/\sqrt{2}} \left(\int_0^{2-4t^2} 8y dy \right) \sqrt{1-t^2}
dt
= \int_0^{1/\sqrt{2}} [4y^2]_{y=0}^{2-4t^2} \sqrt{1-t^2} dt
= \int_0^{1/\sqrt{2}} 4(2-4t^2)^2 \sqrt{1-t^2} dt
= \int_0^{1/\sqrt{2}}16(1-2t^2)^2 \sqrt{1-t^2} dt$
となる。
これで1変数の2次無理関数の積分まではこぎ着けた。
あとは、本にあるように、$t=\sin \theta$ と置換積分すると、
$I=\int_0^{1/\sqrt{2}} 16(1-2t^2)^2 \sqrt{1-t^2} dt
=\int_0^{\pi/4}16 \cos^2(2\theta) \cos^2\theta d\theta
=\int_0^{\pi/4} 8 \cos^2(2\theta) (1+\cos2\theta) d\theta
=\int_0^{\pi/2} 4 \cos^2 \varphi (1+\cos \varphi) d\varphi$
となり、とにかく、計算できる積分であることが分かった。
ここからはいろいろやり方はあるが、例えば、
p116 問題5.109 の記号を使えば、
$I=4(I_2 + I_3)$
と表示される。
$I_2 = \pi/4,
I_3 = 2/3$
なので、答えが $\pi+8/3$ になるのである。
- p 242, 問題7.48. 「極座標に変換する」ように手段を限定すると本の解答になると思うが、最後の$\varphi$ に関する積分のところが巧妙な感じなので、別解を考えてみる。まず、積分を計算する前に領域の形について考察する。Step 0: $(x,y,z) \in D$ が $x<0$ を満たしているとすると、$0 \le y^2\le 2xz$ かつ $z\ge0$ なので、$z=0$ でなければならない。このとき、再び条件 $y^2 \le 2xz=0$ より、$y=0$ でもある。したがって、$D \cap \{ x<0 \} \subset \{ y=z=0 \}$ という薄い集合になるので、積分領域から外してもよい。つまり、$D' = D \cap \{ x \ge 0 \}$ として、この上で積分すると仮定してよい。(なお、ここまでの部分の考察が、本の解答では明示的でない。)
Step 1: 次に領域の境界に出てくる2次式 $2xz$ を対角化するために、
$x=(u-v)/\sqrt{2},
z=(u+v)/\sqrt{2}$ と変数変換(置換積分)する。$(x,z)$ 平面上での45度の回転である。
そうすると、
$dxdydz=dudvdy$ であり、被積分関数は
$(u+v)/\sqrt{2}$
となる。積分領域は
$D''= \{(u,v,y) \mid u-v \ge 0, u+v \ge 0, u^2+v^2+y^2 \le 1, y^2\le u^2-v^2 \}$
となる。最初の2つの不等式から、$u \ge \left|v\right| \ge 0$ となり、$u\ge 0$ が成り立つ。
逆に、$u\ge 0$ と最後の不等式 $ y^2\le u^2-v^2$ が成り立っていれば、$u \ge \left|v\right|$ となる。従って、$D''= \{(u,v,y) \mid u\ge 0, u^2+v^2+y^2 \le 1, v^2+y^2\le u^2 \}$
$= \{(u,v,y) \mid u\ge 0, v^2+y^2 \le \min(u^2, 1-u^2) \}$ である。なお、計算に直接必要ではないが、この立体 $D''$ が球と円錐の交わりで表される立体であること、特に$u$ を回転軸とする回転体であることがわかる。 Step 2: 領域の考察を終えて、積分に移る。
被積分関数 $\frac{u+v}{\sqrt{2}} dudvdy$ のうち、
$v dv$ の方は奇関数の積分であり、領域 $D''$ が $v\mapsto -v$ で対称なので積分値は零である。
したがって、$u$ の方の積分だけが残って、
$I = \frac{1}{\sqrt{2}} \int_{D''} \frac{u}{\sqrt{2}} du dv dy$となる。$u$ を固定したときの $(v,y)$ に関する積分は円の面積 $\pi g(u)$ となる。ここで、$g(u) = \min(u^2, 1-u^2)$ である。従って、
$I = \int_0^1 \frac{u}{\sqrt{2}} \pi g(u) du$ となる。これで1変数の多項式の積分になった。 Step 3: あとはどのようにしても計算できる。たとえば $u=\sqrt{t}$ と置くと、
$I= \int_0^1 \frac{1}{2\sqrt{2}} \pi g(\sqrt{t}) dt
= \frac{\pi}{2\sqrt{2}} \int_0^1 \min(t, 1-t) dt
= \frac{\pi}{2\sqrt{2}} \times \frac14
= \frac{\pi}{8\sqrt{2}}$.
最後の積分は三角形の面積である。計算終わり。
この解法だと、難しい関数の積分(例えば例5.73)を使わずに答えの数値が求まるのが不思議である。