ochiai/Grobner の履歴差分(No.1) - PukiWiki

$F=(f_1,\ldots,f_m) \in M(1,m,R)$,
$G=(g_1,\ldots,g_r) \in M(1,r,R)$.

There exists $C \in M(m,r,R)$ and $D \in M(r,m,R)$ such that
$G=FC$ and $F=GD$.
Put $A=I_m - CG \in M(m,m,R)$.
Then $FA=O_{1,m}$ shows $\langle A \range \subset S_F$.

Suppose $B \in M(r,s,R)$ be a generating system of $S_G$.
Put $B^* = CB \in M(m,s, R)$.
Then $F B^*=O_{1,s}$ shows $\langle B^* \range \subset S_F$.

Now take $\mathbf{h} \in S_F \subset M(m,1,R)$.
Put $\mathbf{h}_* = D \mathbf{h} \in M(r, 1, R)$
and $\mathbf{k} = C \mathbf{h}_* \in M(m,1,R)$.
Then $\mathbf{h} - \mathbf{k} = A \mathbf{h} \in \langle A \rangle$.
On the other hand,
$G \mathbf{h}_* =GD \mathbf{h} = F \mathbf{h}=0$ shows that
$\mathbf{h}_* \in S_G$.
Then there exists $\mathbf{\alpha} \in M(s,1,R)$ such that
$\mathbf{h}_* = B \mathbf{\alpha}$.
This shows $\mathbf{k} = CB \mathbf{\alpha}
= B^* \mathbf{\alpha} \in \langle B^* \rangle$.

Summing up these two consequences,
we obtain
$\mathbf{h} = \mathbf{h}-\mathbf{k} + \mathbf{k} \in \langle A \rangle + \langle B^* \rangle
= \langle A \cup B^* \rangle$.



トップ   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS